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Abs trac t  

The properties are studied of a class of space-times determined by assuming the shape of 
the metric form ds 2 including disposable coordinate functions. It has been found that 
this class includes degenerate space-times with geodetic, null, shear-free congruences with 
nonvanishing expansion. The theorem has been proved that this class of solutions of the 
Einstein equations can easily be expanded to solutions of Einstein-Maxwell equations with 
a fairly general electromagnetic field. For a selected subclass relations are given between 
the functions determining the metric form, and two new explicit solutions with arbitrary 
functions of the Einstein-Maxwell equations with a cosmological constant are found. 

1. Me thod  and Formalism 

When presenting some of the results and in the calculations the tetrad formal- 
ism was used described by Debney et al. (1969). For convenience this formal- 
ism will be presented here in a very abbreviated form. 

In the whole space-time the tetrad field of independent eaU(a,/~ = 1,2,  3, 4) 
vectors is introduced, and it is assumed that the Greek letters are suffixes 
referring to the tensor formalism and the Latin letters to the tetrad formalism. 
Summation convention holds for both kinds of suffixes. The ea~ vectors are 
given by the relations 

eaUe ~ = ~Sa b, ea~eav = 8 f (1.1) 

The scalar T b--. is referred to as tetrad component  of the T£~.2:" tensor. 
. a - - ,  . 

The fotlovang relations occur: 

Ta b . . . .  ea#ebv . . r u.. .  T v . . .  = . . .  "'" def . . . . . .  . . . .  e ~ e  2 Ta.~.: "" (1.2) 

1 On leave from the Institute of Theoretical Physics, Warsaw University, Warsaw, Poland. 
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The notation e a is used to denote the differential form of  the first order: 

e a = aef eau dxu  (1.3) 

and the metric form can be presented as follows: 

ds= = eaea = guy dxu dxv  (1.4) 

The Ricci rotation coefficients Pabc, which play a role in the tetrad co- 
variant derivative expressions analogous to that of  the connection coefficients 
in the tensor covariant derivative ones are as follows: 

ra~e = - e S ;  veUe~ (1.5) 

The relations between the eau vectors, lPaae coefficients, and tetrad comp- 
onents of the Riemann tensor Raaea are given by the Cartan formulas 

de a = e b ^ Pa b = P ~ c e  b ^ e c (1.6) 

d Pa b + Pa m ^ P m  a = ½R~ccle c ^ e ct (1.7) 

where 

p% ~f r'%ce c (1.8) 

and the notation d and ^ denotes the exterior derivative operator and 
exterior multiplication, respectively. 

The tetrad system of ea ~ vectors has been assumed so that the el and e 2 
forms are mutually complex and conjugate, and the e 3 and e 4 forms are real, 
viz., 

and that 

el =e2, e3 =e3, e4 =e4 (1.9) 

[ 10 1 ga ea--b=-'~ebu= 1 0 0 ~__. gab (1.10) 
0 0 
0 1 

thus all the ea u vectors are null vectors. 
The tetrad system determined by (1.9) and (1.1 O)is convenient for the 

calculations since the raising or lowering of the tetrad suffixes reduces to their 
variation according to the rule 1,2,  3, 4 -> 2, 1,4,  3, and the operation of 
obtaining conjugate quantities consists in their variation according to the rule 
1, 2, 3, 4 -+ 2, 1,3, 4, e.g. ,  k l  4 = k23 = k13 = k23. 

Condition (1.1 O) is equivalent to the metric form having the shape 

ds 2 = 2ele 2 + 2e3e 4 (1.11) 

In the selected tetrad system given by (1.9) and (1.10) we have 

Pabc = --P~c (1.12) 
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where 

['abe ~ef gain r mbc (1.13) 

and there exist three independent differential forms of  first order, viz., P42, 
FI2 + P34 and P31. The Ricci tensor has seven independent components: four 
real Ra2, R34 , R33 , R44 and three complex R22, R23, R24. The following con- 
vention has been assumed: 

Rab = R cab c (1,14) 

The curvature scalar R = Raa is expressed as follows: 

R = 2R12 + 2R34 (1.15) 

The condition F4z 4 = 0 is equivalent to the vector ed(  = e 3u) being geodetic. 
The condition P424 = P422 = 0 is equivalent to the vector e4 u being geodetic 
and shear-free. If  F424 = 0, then 

Z ~f 0 + i w  = -F421 (1.16) 

where ® is the expansion and co the rotation of  vector e 3/~. The quantity Z is 
known as the complex expansion. If  in these relations we change the suffixes 
in Pat, c according to the rule 4 -+ 3 and 2 +~ 1, then the relations will refer to 
the vector e3U( = e4U). 

Weyl's conformal curvature tensor can be characterized by five complex 
quantities c(i)(i = 1, 2, 3, 4, 5). A space-time is conformally fiat if and only if 
all C (i) vanish. If  a space-time is not conformally flat, then the conditions for 
e4 u to be a Debever-Penrose null vector, single, double, triple or quadruple 
are C (s) = 0, C (s) = C (4) = 0, C (s) = C (4) = C (3) = 0 or C (s)= C (4} = C (3) = 

(z) u (1) (1) (2) C =0 ,  respectively; for vector e 3 similarlyC = 0 ,  C = C = 0 ,  etc. 
The quantities C (i) can be expressed in a simple way by means o f  quantities 
Rabea (see Debney et al., 1969). 

The following lemma l~s been proved: 

Lemma 1. If  C (s) = C (4) = 0 and C (3) 4: 0, then the space-time is of  
[2, 2] Petrov type if and only if 3C0)C (3) - 2 [C (2)] 2 = 0. 

This lemma also holds when we change the suffixes i in C (i) according to 
the rule 5, 4, 3, 2, i ~ t,  2, 3, 4, 5. 

In the present work units have been selected so that the speed o f  light and 
the constant of gravitation are equal to unity: and signature + + + - .  

2. Shape o f  the Metric Form ds 2 :rod the Theorem o f  Expansion for  
Solutions with Electromagnetic Field 

We studied the class o f  metric forms ds 2 = 2ele z + 2e3e 4 given by  the 
equations 

el = r + i__~fi d y  = e2 (2.1a) 
o~ 
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e 3 = d p  + a d Y  + -6 d Y  (2.1b) 

e 4 = dr - i 3 y f l d Y + i  3 ~ . f l d P + 7  e 3 (2.1c) 

where r and p are real coordinates, and Y is a complex coordinate, and besides 

o = 2m O y l n  o~ --  ie Oyf l  = o(Y,  Y )  (2.1d) 
def 

r 2 + fie = ~' = 3'(r, p, Y, Y) (2.1e) 

where coefficient e and the disposable functions a,  ~,f, m are limited by the 
conditions 

e=_+l (2 .10 

a = a(Y, "Y) = ~ ¢ 0 (2.1g) 

/3 = fi(Y, Y) =/3 (2.1h) 

; =  f (r ,  p, Y, Y )  = f (2.1i) 

m = m ( Y )  (2.1j) 

Additionally we introduce a limiting condition connecting the functions ~, fi, 
and m: 

0~2 [ (m - -  m)  3 y 3 F l n  c~ +ie 0 y a y f i ]  +ifi = 0 (2.1k) 

Certain limitations ensuing from this condition are discussed further in this 
section in footnote 3. 

Although the 3' function is a disposable real function of  all coordinates we 
express it by another disposable real function f of all coordinates as shown in 
(2.1 e), since in many cases it is more convenient to employ the function f 
than 3'. In the class of metrics (2.1) function f i s  given with an accuracy to the 
component or, where c = ~ = const, which results from the disposable character 
o f  the m function. If we assume f =  f '  + cr, m = m ' ( Y ) -  c/2  and p =p '  +c  In e¢, 
then after dropping the primes we obtain again the expressions (2.1). 

From (2.1d)and (2.1k)i t  follows that 

3y, o - 3 y 5  = 2ifi/c~ 2 (2.2) 

We have the following lemma: 

Lemma  2. If  3 y a g l n  c~ ¢ 0, then the conditions/3 = 0 and a = 0 are 
equivalent in the sense that the shape o f  the metric form ds 2 is 
preserved. 2 

2 Under the assumption, if de 3 = 0 then theie exists p such that e 3 = d p ,  the conditions 
/3 -- 0 and cr = 0 are equivalent in class (2.1) (in the above given sense) and the assump- 
tion ~Y~'7 In a ¢ 0 is unnecessary. 
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Proof. If  o = 0, it  follows immediately from (2.2) that/3 = 0 (without  the 
condit ion 3r-3~ In a =/= 0). I f  on the other hand/3 = 0, then because 3r-3,7 In a =/=0 
we have from (2 .1 j ) and  (2 .1k) tha t  m = ~ = const, and hence considering 
(2.1b) and (2.1d) we get e 3 = dp ' ,  where p '  = p + 2m lna .  

Let us notice that if/3 = 0 and 3vOp In a :/= 0, then a disappears only in the 
sense that  e 3 = dip and despite (2.1d) we may have m 4: 0. Hence, for fl = 0 
the component  (m + N ) r  = const- r in the numerator  of  the fraction in (2.1e) 
may be preserved. Of course we can also have m = 0, but  in this case the 
component  const,  r in the numerator of  the fraction in (2.1 e) (related in certain 
cases with the mass parameter as we shall see in the subsequent section o f  the 
present paper)  need not  disappear in view of  the fact that  the function f i s  
determined with an accuracy to the component  const • r .  

Introducing the operator  3a~fea  la Ot, we obtain for class (2.1) that  

31 : a Z ( O y  - o 3 0 + i 3y/3- Or) = 3 2 (2.3a) 

O 3 = 3 o - ~, O r (2.3b) 

~4 = Or (2.3c) 

de  1 = ZOgc~ . e 1 ^ e 2 + Z,ye I ^ e 3 - Z e  1 ^ e 4 = d e  z (2.4a) 

d e  3 = - 2 i Z Z / 3 e  I ^ e 2 (2.4b) 

d e  4 = 2 i Z Z ( a  2 3 y  3 g f i -  ~7 )e  ~ ^ e 2 + OaT" e a ^ e 3 (2.4c) 

P121 + F341 = Z 3yOe (2.5a) 

P122 + P342 = - Z  0~oL (2.5b) 

P123 + F343 = i Z Z ( 2 f f y  - c~ 2 3y3-9~)  + 8r7 (2.5c) 

lPl24 + F344 = 0 (2.5d) 

P311 = Pal4 = 0 (2.6a) 

P312 = ZT + i Z Z a  2 3 y  3~[J (2.6b) 

F313 = 31T (2.6c) 

P421 = - ( r  +//~)- 1 = - Z  ¢ 0 (2.7a) 

F422 = F423 = P424 = 0 (2.7b) 

R12 = --2ZZoe 2 0yO~ in a + 

+ (Z2)2 [_2a2~0rO~7~ + e(r  2 _ ~2) "k i~(m - -  177)  + f - -  r Off] 

(2.8a) 

R34 = - ½ Z Z  ara~f+ (ZZ) 2 [2a2~ 0 r  0g~ + 2e~ 2 - i~(fft - m )  - f + r  O~f] (2.8b) 
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R23 = a Z Z 2 ( 2 i a  ~ a "  ~I-" ~F/3 + io~ 2 ~y  ~F ~gfl + ½ ~Fm 

-22,~2 a~,6 • aya?~ + z [ i ( ~  - m)a~,6 + ayy] - z ~  a,o,f" 

- 2 e 2 ~ a ~  + 2iZ2[i~(~ - m) + f - raft] aF/3} (2.8c) 

R 3 3 = ( ~ 2 ) 2  - ~ 2 ( a y o + a v o )  aM+a~aoao; 

+ o(2ZZfl Ogfi" a p f -  ap O F f  ) + O(2Z2fl Oyfl "a p f -  3 o Oy f )  

- 2~2(~y 0~3) 2 - 2 e 3 0 y  Ogfi + i(m - m) Or- a~73 + a:c Ogf 

+ i by3 "Or 3 7 f -  iOg3" Or 3 y f  + Oy[3" Og3" Or Off 

2iZ Oy3 " OFf + 2iZ Og3 " Oyf  + 4Z2( f  - r ~ f )  aye .  av3 } (2.8d)  
2 

R22 = R24 = R44 = 0 (2.8e) 

C (s) = C (4) = 0 (2.9a) 

C (3) = 2Z [ i Z 2 ( 2 ~  - c ~ 2 8 y  a f t )  + i)~7] 

-- 2ZZ(o~2 ~}y a17111 ot + T + 2r OfT) -- ~ Or Or7 (2.9b)  

C (~) = -3~ [iZ2(2~ - ~2 ay 3F3) + 3r7] + 2Z 017 (2.9c) 

C O) = - 2  01 317 - 2Z 3 y a -  ~ 7  (2.9d) 

As is seen f rom (2.9a) for space- t imes  o f  (2.1)  class the vector  e 3r--'u is at 
least a double  Debever-Penrose  vector  (provided the space- t ime is no t  con- 
fo rmal ly  flat).  Hence in class (2.1)  there  are no algebraically general solutions 
(o f  [1, 1, i ,  1] Pet rov type) .  It  fol lows f rom (2.7b)  that  the e3U vector  is geo- 
desic and shear-free,  and f rom (2.7) that  the lat ter  vector  reveals an expansion 
I9 di f ferent  f rom zero and its ro ta t ion  ¢o disappears i f  and only  i f  ~ = 0.3 

3 It appears that in class (2.1a)-(2.1j) without condition (2.tk) vector e 3ti is also geo- 
detic and shear-free (17424 = P422 = 0)  with a nondisappearing expansion 0. The e 3u 
vector is then also the Debever-Penrose vector (C (s) = 0), but need not be degenerated 
since C(4) need not be equal to zero. From this point of view the solutions of the 
[1,1, 1, I] Petrov type are not excluded in class (2.1a)-(2.1j). On the other hand we do 
not know if in the latter class at least one solution may exist of any Einstein equations 
if condition (2.1k) is not fulfilled. We do not know, therefore, if condition (2.1k) is 
independent of (2.1 a)-(2.1j) or whether it is a conclusion drawn from the latter equa- 
tions under the assumption that solutions exist of arbitrary Einstein equations in class 
(2. t a)-(2, l j). It has been found that if we assume ds 2 in the form (2.1a)-(2.1j), then 
we obtain that R24 = C(4) and R22 = 0 and that the condition (2.1k) is equivalent to 
C(4) = R 2 4  = R 4 4  = 0. Hence if we seek for example solutions of equations Ruv = Xga v 
in class (2.1a)-(2.1j), then the relation (2.1k) will be a conclusion from these assump- 
tions, and we shall obtain a degenerate solution only. 
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The electromagnetic field of  interest to us is determined by means of the 
vector potential Vu, given by the differential form V = VudxU, in the following 
way: 

V = - ½ ( e Z + ~ Z ) e  3 - ~ d Y .  f g a - 2 d Y  - ~ d Y .  f e o e - 2 d Y  (2.10) 

where 

e = e (Y)  (2.11) 

is an arbitrary analytical function of the variable Y, only. 
Vector V u as potential is of course given with an accuracy up to the gradient 

of the arbitrary function, and hence the form V is determined with an accuracy 
to the derivative of that function. 

The tetrad components Faa of the electromagnetic field tensor Fur corres- 
ponding to the potential V u are found from the equation 

d V  = --~F~be a ^ e a (2.12) 

and the four independent among them are 

F12 = ~ eZ2 - ~e22 (2.13a) 

F3 4 = ~eZ  2 + leZ2 (2.13b) 

F23 = o22(~ 0,20 + i~2 ~g~) = ~ 82(~2) (2.13c) 

F24 -- 0 (2.13d) 

The electromagnetic field given by relations (2.13) fulfills the full set of  
Maxwell equations withom the currents and charges: 

d(Fabe a ^ e b) = 0 (2.14a) 

Fab,~ = 0 (2.14b) 

in every space-time characterized by the metric of class (2.1). Of course (2.14a) 
follows immediately from (2.12). The direction e 3u is the principal null direc- 
tion of the electromagnetic field (2.13), since 

e3luFulr e3r = 0 (2.15) 

Let us introduce the notation 

fl  d ~ r f -  eY (2.16a) 

If we now assume that dsl 2 is the metric that is formed from the metric 
(2.I)  in such a manner that we substitute the function fl  for function f o r  in 
other words, ifds 2 = 2ele 2 + 2e3e 4, where the forms e a are given by the rela- 
tions (2.1), then 

e~ 
dsl2 de-=f ds2 - r 2 + ~--2 (e3)2 (2.16b) 
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Of course the metric 6512 belongs to class (2.1), as the function f i s a  dispos- 
able one. Let 

Gab ~ f  Rab -- l gabR (2.17) 

P~b g f  2 F a J b  c ' - ~ ~cd  ( 2 . 1 8 )  - -  ~gab*'cd*" 

The following theorem is fulfilled: 

Theorem 1. The fulfilment of any Einstein equations 

Gab = Tab (2.19) 

by the metric ds 2 belonging to class (2.1) is equivalent to the metric 
6s12 satisfying the Einstein-Maxwell equations 

Gab = Tab -- Pab (2.20) 

the electromagnetic field of which is determined by the relations 
(2.13). 

The proof is based on the calculation of the expressions for the tetrad comp- 
onents Gab of the Einstein tensor in both space-times ds 2 and dSl 2 making use 
of (1.1 5) and (2.8). Let us denote these expressions for short by Gab(dS 2) and 
Gab (& 12). From the calculations mentioned it follows that Gab(dSl 2) = Gaa(ds 2) - 
Pab(e, ~), where by Pab(e, ~) we have denoted the expressions for the components 
Paa obtained by substituting in the right-hand sides of relations (2.18) the expres- 
sions given in the right-hand sides of equations (2.13) for the corresponding 
terms Fca. It is easily seen that the thesis in both directions results immediately 
from the above fact as well as from the fact that the field (2.13) fulfills equations 
(2.14) in every space-time of class (2.1), to which belongs also the space-time 
with metric dSl 2. 

Let us note that in the light of (1.10) and (2.8e), T22 = 7"24 = T44 = 0 is the 
necessary condition for the metric of class (2.t)  being among the solutions of 
equations (2.19). The consistency conditions with respect to the metrics dSl 2 
and equations (2.20)are fulfilled, since from (2.18) considering (2.13d)it 
follows that P22 = P24 = P44 = 0. 

Theorem I is an equivalence, one of the implications being of [viz., if 
(2.19) then (2.20)] practical importance, since it says that if we have a 
solution of  any Einstein equations (2.19) for which we can prove that it can be 
brought to the (2.1) form, then this solution can automatically be extended to 
include the solution of the Einstein-Maxwell equations (2.20) by adding to 
the expression for function f the component -e~, where e (Y) is an arbitrarily 
chosen analytical function. The class of metrics (2.1) includes generalizations 
of many known solutions of Einstein equations, among others generalizations of the 
of the Kerr solution. The generality of class (2.1) seems to be quite high owing 
to the occurrence in the form e 4 [see (2.1c) and (2.1e)] of a disposable real 
function 7 of all four coordinates. 

3. Comparison with the Works o f  Other Authors 

Robinson et al. (1969a) have shown that if in any space-time a null vector 
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field k u exists that is geodetic_and shear-free, then there exists such a system 
of coordinates x ~ = (r, p, Y, Y) that the metric form takes the shape 

ds 2 = 2p2 d Y d Y  + 2kudxU(dr + Q d Y  + Q d Y  + Skudx"  ) (3.1a) 

where 

kudx"  =p(dp + q d Y  + ~ dF)  (3.1b) 

where the functions p, q may depend only on three variables O, Y, Y, whereas 
the functions P, Q, S may depend on all four coordinates. As may be seen, the 
class of metrics (2.1) is a subclass of a more general class (3.1). In the present 
work we approached the problem in the opposite way. We assumed the form 
of the metric and therefrom we obtained as a conclusion that vector e 3 
[corresponding to vector k u in (3.1)] is geodetic and shear-free. This situation 
is a particular case of a more general regularity. It appears that a theorem 
reverse to the one proved by Robinson et at. (1969a) holds, viz., if we assume 
that the metric has the form (3.1), then k u is the null vector, geodetic, and 
shear-free. To prove this it suffices to observe that the metric form (3.1). has 
the shape (1.11) and fulfills the conditions (1.9) and (1.10) if we assign to the 
vector e ~  the vector k u assuming at the same time quite formally that 
p2 = p,fi',. Calculating in this tetrad system the values of the relevant Pabc we 
find that I7424 = lP422 = 0, which proves the thesis. Hence we have the follow- 
ing theorem: 

Theorem 2. For every space-time its metric ds 2 can be presented in 
the form (3.1) if and only if a null, geodetic, shear-free vector field 
ku exists in that space-time. 

Robinson et al. (I 969a), and Robinson and Robinson (1969) have studied 
the properties of the (3.1) class of  metrics as the solutions of equations 
Ruv = 0. Robinson et aI. (1969b) have forwarded a method of expanding 
solutions of equations Ruv = 0 in class (3.1) to the solutions of Einstein- 
Maxwell equations with electromagnetic field revealing the principal null 
direction ku. In this situation all the results that correspond to the solutions 
of equations Ruu = 0 within the framework of class (2.1)-in the case of 
theorem t when in equations (2.19) and (2.20) we have Tab = O-are particular 
cases of more general results of the authors quoted. Outside the region of 
results covered by these authors are those results given in the present work 
which correspond to the solutions of equations (2.19) and (2.20) with 
Tab ~ 0 for at least one pair of indexes (a, b). Owing to the postulated 
generality of the 3' function such solutions exist in class (2.1), e.g., solutions 
including the cosmological constant. 

The electromagnetic field (2.13) described in Theorem 1 has the potential 
V u given by (2.10), which is a generalization of the potential of the electro- 
magnetic field that was the object of interest of  Debney et al. (1969). The 
potential considered by the latter authors [of appearance analogous to (2.10), 
cf. Debney et al., t969, p. 1853 formula (6.8)] in its particular case, when in 
terms of the present work e = g = const, gives a generalization of the Kerr 
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metric to the Kerr-Newman one whose electromagnetic field (1) has a poten- 
tial that passes into the Coulomb potential of  the electric charge e when the 
Kerr parameter a (according to the notation of  Debney et al., 1969) tends to 
zero, and (2) in the asymptotic area is a Coulomb electric field of  charge e 
and magnetic field of  the magnetic dipole with momentum a-  e [cf. Debney 
et al., 1969, pp. 1853-4). The above analogies allow what is from the physical 
point of  view a reasonable interpretation of  the e ( Y )  function in dsl 2 metrics, 
especially those that are generalizations of  the Reissner-Nordstr6m metric. 
In special cases, when e = e o + ig o = const, the real constants e o, go can be inter- 
preted as electric and magnetic monopoles,  respectively. Let us observe, how- 
ever, that the separation into electric and magnetic monopoles is significant 
at the level of  the VU and lab quantities characterizing the electromagnetic 
field [see (2 . t0)  and (2.13)], but the metric dsl 2 itself is from the formal 
point of  view insensitive to this separation, since it includes the expression 
- e~  equal to - e  2 - go 2 for e = e o + ig o. If  therefore eo, g o = const, then the 
constant - eo  2 - go 2 can be formally replaced in the given metric dSl 2 by one 
nonpositive constant. 

4. Conditions o f  Solutions in a Certain Subclass o f  Class (2 .1)and 
Explici t  Solut ions 

In this section we shall concentrate on the solutions of  Einstein equations 
containing the cosmological constant X: 

Rab = Xgab (4.1) 

restricting ourselves to solutions in cIass (2.1) with the additional limiting 
assumption 

307 = 3o f  = 0 (4.2) 

Of course every such solution may be generalized, in accordance with Theorem 
i,  to the solution o f  equations (2.20) with Tab = --Xga~ , by supplementing the 
expression for function f w i t h  the component  - e ( Y ) O ( Y )  corresponding to 
the electromagnetic field (2.13). 

After substituting the expressions for Ra~ from (2.8) to (4. t )  and calculat- 
ing the sum Ra2 +R34 we obtain that 3 r O r f  = 2e - 4 a Z O y 3 y l n o e  - 4X(r 2 +/32). 
From the latter equation after integration and the integration equations (4.1) 
[taking account of  (4.2)] we get 

f l  = r2( e - 2a2 3 y 3 g l n  a)  + r (M + M - m - ~ )  

- i~(m - m)  + e~ 2 + 20e2/33y3~/3 

+ 20~2/323y 3~1no¢ + ) .(--~r 4 -- 2r2/32 +/34) -- ee (4.3) 

and the relations between the functions ~,/3, m: 

a 2 3y 3,7/3 + 2a2/3 3yar lnc~ + ~3,/33 = (i/2) ()~t _ M) 

3:c 37(a2 Ov a~ In a + X¢?) = 0 

(4.4a) 

(4.4b) 
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~2[(fi/ m)3y3y lnee+ie3y~g t3]  +i /3=0 (4.4c) 

where M = M ( Y )  is an arbitrary analytical function o f  one variable, Y. Equa- 
tion (4.4c) is the condition (2.1k) added here for completeness. From relations 
(4.3), (2.16), and (2.1e) we see that in the expression determining the function 
7 certain components cancel each other. If we provide for the presence of  the 
electromagnetic field (2.13), the expression for 7 will take the form 

7 = (r 2 + ~2)-1 . [_r20~2 ~jy c~glno ~ + o~2/j ~}y c ~  + 0¢2/~ 2 Oy 3glno~ 

+ (r/2) (3//+2hr) + (X/2) ( - l r 4  -- 2r 2~j2 +/~4) __ ½ eg] (4.5) 

Among the limiting cases when X ; 0, the following solution of  equations 
(4.4) deserves our attention: 

= ( i /x/2)(1 + e Y Y )  (4.6a) 

2 [  1 - e Y Y  (a +a) ]  (4.6b) 
= i (N  - m) + YOya + Y ~ d  + 1 + eY-----~ 

where a = a(Y)  is an arbitrary analytical function of  one variable, Y. It can be 
easily shown that in this case we have 

re(Y)  = M ( Y )  (4.6c) 

f l  = - e ( Y ) ~ ( Y )  ( f =  0) (4.6d) 

The metric (4.6) without the electromagnetic field has been found earlier 
by Robinson et al. (1969a) and subsequently expanded by Robinson et al. 
(1969b) to provide full solution (4.6) with the field (2.13). In the case e = 1, 
the metric (4.6) is a generalization by means of  three arbitrary analytical 
functions re(Y),  a (Y) ,  and e ( Y )  of  the solution found by Demiafiski and 
Newman (1966), which in turn is a generalization of  the Kerr-Taub-NUT- 
Newman metric, which consists in supplementing the latter metric with a 
magnetic charge parameter. The metric mentioned found by Demiafiski ~,)nd 
Newman (1966) is derived from (4.6) by assuming e = 1, rn = rn o + in o = const, 
a = a o = ao = const [as may be seen from (4.6b), for a = const only Rea appears 
in metric (4.6)], and e = e o + ig o = const. The constants too, n o, a o, eo, go are then 
the mass, NUT, Kerr, electric charge and magnetic charge parameters, respect- 
ively. If  in this case a transformation of the coordinates is performed: 
Y = tan (0/2) • exp iso, p = p' - 2m o In c~ + 2noso, then we obtain the standard 
axially symmetric folm ofds  2 in spatial spheric coordinates r, 0, so with the 
fourth coordinate 0'. 

Since the solution (4.6) is a generalization of  physically interesting metrics, 
we shall present several properties o f  metric (4.6) that have not been given by 
its first discoverers (Robinson et al., 1969a, b). 

The metric (4.6) has the following features: It may be only flat or of  [2, 2] 
or [2, 1, 1 ] Petrov type;  it is fiat if and only if C (3) = 0; C (3) = 0 if and only 
if m = e = 0; the metric is o f  [2, 2] Petrov type if and only if 3grn = Ore = 0 
and m ¢ 0 or e ¢ 0 and a = al Y-1 + a2 + aaY, where al, a2, aa are arbitrary 



368 KOWALCZYI~SKI AND PLEBAlqSKI 

complex constants (in view of  (4.6b) we can assume without any loss of  
generality that constant a z is real). 

The proof  of  the above properties is based on relations (2.9) and Lemma 1, 
and in the case o f  [2, 2] type first it is shown that 3yrn = Ore = 0 and subse- 
quently it is proved that the function a has the above-given form. However, 
the constants aa, a2, a3 do not form a significant system of  constants for the 
solution of  [2, 2] type. There exists eventually such a transformation of  
coordinates, r, p, Y, Y-+ r, p', Y', Y', where Y '  = (A + B Y ) / ( C  + D Y ) ,  
p' = p - 2 m l n ( D Y '  - B)  - 2m ln(/gY' -- B), the relation lAD  - BCI = 1 
assumed for the complex constants A, B, C, D so that in the case of  [2, 2] 
type the metric (4.6) preserves its shape o f  form ds 2, and a ( Y ' )  = const. Hence, 
after performing this sort o f  transformation and dropping the primes in 0', Y', 
~V' we have such a situation as if  we had not performed the transformation 
but only assumed that a ( Y )  = a2 and al = a3 = 0. 

In the case o f  nonvanishing cosmological constant ~ two solutions of  
equations (4.4) were found giving metrics presumably unknown hitherto. 

The first one is 

= (1/x/~) (1 + e r Y )  (4.7a) 

/3 = n o = const (4.7b) 

From (4.4) we then find that M, m = const and Im m = eno. Putting 

M o ~f  ReM = const (4.7c) 

we find from (4.3) tlmt 

fl  = 2r(Mo - Rem) + X(-½r 4 -- 2no2r z + no 4) - e ( Y ) ~ ( Y )  (4.7d) 

For e = 1 we obtain after transformation of  coordinates: Y = tan (0/2) • 
exp go,/9 =/9' - 2 Re m • In c~ + 2notp, and dropping the prime in p '  that 

ds 2 = (r 2 +no2)(dO 2 +sin 2 Od~ 2) + 2dr(dp + 2n o cos Od~) 

- [ 1 - 2 M ° r + 2 n ° 2 + 3 " ( - ~ r 4 - 2 n ° 2 r 2 + n 4 ) - e ( Y ) e ( Y ) ] r 2  + n° 2 

x (do + 2no cos Odtp) 2 (4.8) 

For e = - 1  we obtain after transformation of  the coordinates Y = tanh (0 /2 ) '  
exp i~0, p = p'  2 Re m • In c~ - 2no~0, and dropping the prime in p '  that 

ds 2 = (r 2 + r/02) (dO 2 + sinh 2 O&o 2) + 2dr(do - 2n o cosh 0d~p) 

+ [1 + 2M°r - 2n°2 + ~ ' ( - l r 4  - 2 n 2 r 2  +n°4) - e ( Y ) ~ ( F )  

[ t.2 +/Tg 

x (do - 2no cosh Od~o) 2 (4.9) 

The solution (4.8) is the generalization, given in standard form in spheric 
coordinates r, O, ~0, with p as fourth coordinate, of  the Taub-NUT metric 
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providing for the presence o f  the cosmological constant X 4 and electromagnetic 
field (2 . i3) .  The constants 34o, no are parameters o f  mass and NUT, respectively, 
whereas e(Y) is an arbitrary analytical function determining the electromagnetic 
field. The metric (4.9) is a hyperbol ic  equivalent of  the metric given by (4.8). 

Metric (4.7) reveals the following properties: It is conformatly fiat if  and 
only i f C  (3) = 0; C (3) = 0 if and only i f M  o = n o = e = 0; it is of  [2,2] Petrov 
type if  and only if C (a) g= 0 and aye = 0; is of  [2, 1, 1] Petrov type i f  and only 
i f  aye =/= O. 

The proof  is based on the relations (2.9) and Lemma I. 
Besides, calculating C (i) from (2.9) and P31a from (2.6), it may be easily 

shown that for metric (4.7) the condit ion aye = 0 is equivalent to the fact that 
vector e 4/~ is geodetic, shear-free, and reveals an expansion different from zero; 
the rotat ion of  vector e 4*t vanishes if and only if n 0 = 0; the condit ion that 
C (3) 4= 0 and aye  = 0 ([2, 2] type)  is equivalent to the vector e 4u being a 
double Debever-Penrose vector. Hence, in tM case when metric (4.7) is not 
of  [2, 1,1 ] type, the independent vectors e 3u and e 4.* have the same 
features from among those mentioned hitherto.  

The second solution of  equations (4.4) with nonvanishing cosmological 
constant which has been found has the form 

X > 0  

o~ = (2X) 1 / 2 ( f H d Y  + f H d Y )  

¢ = i(t7 - t l )  

(4.10a) 

(4.10b) 

(4.10c) 

where H = H(Y) is an arbitrary analytical function o f  one variable, K From 
(4.4) we get the following relations between the functions H, m, and M: 

H = [2X(m - c t ) ] -  I = [(3/8X) (c o - M)] 1/3 (4.10d) 

where co, cl are arbitrary real constants. Considering (4.10d) we can select one 
o f  the functions H, m, M as an arbitrary one. It is most convenient,to choose 
H. In that  case we obtain from relation (4.5), already providing for the presence 
of  the electromagnetic field, that 

~, = [r ~ - ( H -  £ r ) 2 ] - 1 .  {cor - ~ + X[--~r  4 + r~( / /2  + l q 2 )  

_ ~ r ( H  3 + / 7 3 )  + ~(H ~ _/~2)2]} (4.10e) 

After transformation of  the coordinates r = r '  + H +/7, p =/9' - 2c I In ~ + 
e(H + H), and subsequently dropping the primes at r '  and p '  we obtain the 

4 The generalization of the Taub-NUT metric (with signature + - - - )  to the solution with 
a cosmological constant (without the electromagnetic field) has been given earlier by 
Demiafiski (1972 and 1973), but the term providing for the presence of the cosmological 
constant X has been calculated by him incorrectly. Eventually in a system of coordinates 
identical as in (4.8) (account being taken of the signature) Demiafiski has given 
-(X/3) @2 + 5no 2) . ( e 3 ) 2 ,  whereas this term should be - - ~ ( ~ r  4 + 2no2r 2 - t7o4)(r 2 + 
hog) -1- (eS)2. 
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metric ds 2 = 2ele 2 + 2e3e 4, where 

el _ r  + 2H [ f H d Y  + f H d Y ]  -1 d Y =  e 2 (4.11a) 
(2X) 1/2 

e 3 = do + X -1 [ f H d Y  + f H d Y ]  -1 d ( Y  + Y)  (4.1 lb )  

e 4 = dr + [r 2 + 2r(m+~r)  + 4H~]-1  

x (co(r + H + H) - (~./6)r 2 [r 2 + 4r ( a  + ] ] )  + 12H]1] - l eg}e  3 (4.11 c) 

The metric presented above corresponds to both  values of  the coefficient 
e = -+1, and, as is seen, it is independent of  e. In metric (4.11) the limiting 
transition X -* 0 cannot be realized if H 4= 0. However, i f  we assume formally 
that  X l / 2 f H d Y  = h = const [Re h =# 0 considering (2.1g) and (4.10b)] ,  then 
H = 0, and alter transformation of  the coordinates O = P ' -  (Y '  + I7')X -1/2, 
Y = (h + h)Y', and dropping the primes at p', Y '  we obtain a subcase of  metric 
(4.11 ): 

ds 2 = r 2 d Y d Y  + 2drdp + (1/r2)[2cor - (X/3)r 4 - e~] dp 2 (4.12) 

in which the limiting transition X -+ 0 is of  course admissible. 
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