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Abstract

The properties are studied of a class of space-times determined by assuming the shape of
the metric form ds? including disposable coordinate functions. It has been found that

this class includes degenerate space-times with geodetic, null, shear<free congruences with
nonvanishing expansion. The theorem has been proved that this class of solutions of the
Einstein equations can easily be expanded to solutions of Einstein-Maxwell equations with
a fairly general electromagnetic field. For a selected subclass relations are given between
the functions determining the metric form, and two new explicit solutions with arbitrary
functions of the Einstein-Maxwell equations with a cosmological constant are found.

1. Method and Formalism

When presenting some of the results and in the calculations the tetrad formal-
ism was used described by Debney et al. (1969). For convenience this formal-
ism will be presented here in a very abbreviated formi.

In the whole space-time the tetrad field of independent e (e, u =1, 2,3, 4)
vectors is introduced, and it is assumed that the Greek letters are suffixes
referring to the tensor formalism and the Latin letters to the tetrad formalism.
Summation convention holds for both kinds of suffixes. The e"u vectors are
given by the relations

b _sbh -

ele =0y ele? =8} 1.n
The scalar 7, b+ is referred to as tetrad component of the Y;l'f .. tensor.
The following relations occur:

b... — ,u,b e Vers @ L,V L, b
T, defeae,,...Tp_,,, T, =¢€e, r,’. (1.2)
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The notation e is used to denote the differential form of the first order:

e“d - e, dx¥ (1.3)
and the metric form can be presented as follows:
ds? = e, =g, dx* dx” (1.4)

The Ricci rotation coefficients I'%, ., which play a role in the tetrad co-
variant derivative expressions analogous to that of the connection coefficients
in the tensor covariant derivative ones are as follows:

r%, = ¢, ete” (1.5)

The relations between the e, vectors, ['% e coefficients, and tetrad comp-
onents of the Riemann tensor K%, ; are given by the Cartan formulas

de® =e® AT =T%e% A e (1.6)
dl% +T%, AT, =3R% e A ? 1.7)

where
Fab dzf Fabcec (1 8)

and the notation d and A denotes the exterior derivative operator and
exterior multiplication, respectively.

The tetrad system of ¢* vectors has been assumed so that the ¢; and e,
forms are mutually complex and conjugate, and the e3 and ey forms are real,
viz.,

€, = é,, €3 = €3, €4 =864 (1.9)
and that
01 0 0
fw=cten= |0 0 o 1|7¢” (1.10)
0 010

thus all the e} vectors are null vectors.

The tetrad system determined by (1.9) and (1.10) is convenient for the
calculations since the raising or lowering of the tetrad suffixes reduces to their
variation according to the rule 1,2, 3,4 2,1, 4, 3, and the operation of
obtaining conjugate quantltles consists in their var1at10n according to the rule
1,2,3,4-2,1,3,4,e.8, k" =k*3= k'3 = ka3

Condltlon (1. 10) is equivalent to the metric form having the shape

ds? =2e'e? + 2e%* (1.11)
In the selected tetrad system given by (1.9) and (1.10) we have
Fabc = ‘Fbac (1 -12)
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where
Tase djf Eam | (1.13)

and there exist three independent differential forms of first order, viz., I';,,
Iy + 34 and T'3;. The Ricci tensor has seven independent components: four
real R12, R34, R33, R44 and three Complex Rzz, R23, R24. The fOHOWing con-
vention has been assumed:

Rab =Rcabc (1 .14)
The curvature scalar R = R%, is expressed as follows:
R=2R; + 2R;34 (1.15)

The condition T'yp4 = 0 is equivalent to the vector ef*(= e**) being geodetic.
The condition I'4p4 = T30, = 0 is equivalent to the vector e being geodetic
and shear-free. If I'404 = 0, then

Zd?f ®+iw=—r421 (116)

where © is the expansion and w the rotation of vector e3*. The quantity Z is
known as the complex expansion. If in these relations we change the suffixes
in I'yp. according to the rule 4 > 3 and 2 + 1, then the relations will refer to
the vector eg*(= e™).

Weyl’s conformal curvature tensor can be characterized by five complex
quantities C9DG=1,2,3,4,5). A space~time is conformally flat if and only if
all CD vanish. If a space~time is not conformally flat, then the conditions for
e4" 1o be a Debever-Penrose null vector, single, double, triple or quadruple
are 09 = 0, C® =@ = 0, B =@ =B =(or C(ng: CH® =B =
c? =0, respectively; for vector e3* similarly cW=0,cW =0 =0, etc.
The quantities C) can be expressed in a simple way by means of quantities
R,pcq (see Debney et al., 1969).

The following lemma has been proved:

Lemma 1. 1If C® = ¢® = 0 and €@ =0, then the space-time is of
[2, 2] Petrov type if and only if 3¢MC®) _ 2[c@)2 =0,

This lemma also holds when we change the suffixes i in C®) according to
therule 5,4,3,2,1~1,2,3,4,5.

In the present work units have been selected so that the speed of light and
the constant of gravitation are equal to unity: and signature ++ + —.

2. Shape of the Metric Form ds* and the Theorem of Expansion for
Solutions with Electromagnetic Field

We studied the class of metric forms ds? = 2e'e? + 2e3e* given by the
equations
r+i —3
e ;“———ﬁa’Y=e2 (2.1a)
o



360 KOWALCZYNSKI AND PLEBANSKI

e3=dp+odY+5dY (2.1b)
et =dr — i 0y BdY +idypdY +ye? (2.1¢)
where r and p are real coordinates, and Y is a complex coordinate, and besides
0 = 2mdyln o —iedyp= oY, Y) (2.1d)
_1 +(m+r'ﬁ)r+iﬁ(ﬁ-m)+f el —
Yo e e Y=vrp, YY) (2.1e)

where coefficient e and the disposable functions a, 8, f, m are limited by the
conditions

€=11 (2.11)
a=a(Y,Y)=a#0 (2.1g)
B=B(Y,Y)=8 (2.1n)
f=rrp. Y, V=1 (2.19)
m=m(Y) (2.19)

Additionally we introduce a limiting condition connecting the functions «, §,
and m:

o?[(m — m) dy Oy In a +ie dy 050] +iB=0 (2.1k)

Certain limitations ensuing from this condition are discussed further in this
section in footnote 3.

Although the y function is a disposable real function of all coordinates we
express it by another disposable real function f of all coordinates as shown in
(2.1e), since in many cases it is more convenient to employ the function f
than vy. In the class of metrics (2.1} function f is given with an accuracy to the
component c¢r, where ¢ = ¢ = const, which results from the disposable character
of the m function. If we assume f=f +cr, m=m'(Y)—c/2and p=p'+clna,
then after dropping the primes we obtain again the expressions (2.1).

From (2.1d) and (2.1k) it follows that

950 — 0y 0 = 2iffa? (2.2)
We have the following lemma:

Lemma 2. If 0y 0y In o 5 0, then the conditions §=0and o =0 are
equivalent in the sense that the shape of the metric form ds? is
preserved.

2 Under the assumption, if de3 = 0 then there exists o such that ¢3 = dp, the conditions
8 =0and ¢ = ( are equivalent in class (2.1) (in the above given sense) and the assump-
tion 3y 8y In a # 0 is unnecessary.
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Proof. If 0 =0, it follows immediately from (2.2) that 8 =0 (without the
condition 3y 0% In a # 0). If on the other hand §= 0, then because 3y 33 Ina#0
we have from (2.1j) and (2.1k) that m = # = const, and hence considering
(2.1b) and (2.1d) we get e® =dp’, where p' = p + 2mIna.

Let us notice that if = 0 and 8y 83 In a # 0, then o disappears only in the
sense that e = dp and despite (2.1d) we may have m 0. Hence, for f=0
the component (m + #)r = const- r in the numerator of the fraction in (2.1¢)
may be preserved. Of course we can also have m = 0, but in this case the
component const- 7 in the numerator of the fraction in (2.1e) (related in certain
cases with the mass parameter as we shall see in the subsequent section of the
present paper) need not disappear in view of the fact that the function fis
determined with an accuracy to the component const - 7.

Introducing the operator 8, =.e,* 8, we obtain for class (2.1) that

adif
31 =aZ(dy — 03, +idyf-3,) =20, (2.3a)
93=3, — 70, (2.3b)
3. =0, (2.3¢)
de' =Zdga-e! n e +Zyel n €3 — Zel A e* = de? (2.42)
de® = -2iZZBe! A e? (2.4b)
de* =2iZZ(a? 0y 0y8— fy)el A e +0,7 A aed (2.4¢)
o + 1341 =Z 0y (2.5a)
FI 32 + F342 = —Z 8?0: (2.Sb)
Ti23 +T343 =iZZ(2py — o* 3y 07B) + 3,y (2.5¢)
I'y2q +T'344=0 (2.5d)
[311 =T314=0 (2.6a)
Uyyp =2y +iZZa? 3y 056 (2.6b)
a3 =0yy (2.6¢)
Doy =—(r+ipy ' =—Z#0 (2.72)
D422 =Ta23 = T4 =0 (2.7b)

Ry, =—2770,8ydy In o+
+(ZZ)? [-20%30y 078 + €(r® — B2) +iB(7 — m)+f—rd,f]
(2.8a)
R34 =—377 0,8, +(ZZ ) [26*3 dy 058 +2e6% — if( —m) —f+r3,f] (2.8b)
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R,3 = oZZ*{2ia dya - dy 0yp + i’ Dy Oy 370 + 50y
—30,09f +%i07B- 0,0,/ +450,0,f +ie dyB
—2Z02 978 dy 7B + Z[i (7 — m)dgh + 7S] — ZGdpf
—2eZBdyp + AZZ[iB(7A — m) +f —rd,f] 076} (2.8¢)
Rs5 = (aZZ)? {-« [&% + % (dyo + 870)} Qpf + 05 3y 0pf
+0(2ZZBovp  8,f — 8,07 + 5(2ZZBAyp * 3, — 8,0y f)
+2(edyB - 0yB +im 3y - Oy Ina — i dy B - 37 In ) (3, 0,f — 2 ZZ B,f)
— 2030y 3yB)* — 2683y 3P +i(7 — m)dy d7B + dy dyS
+i0yf - 0,0yf — idyB 0, 0yf + 0yf -0y ' 0,0,f
— 2UZ By - OFf + 2UZ O7B - Ovf + 4ZZ(f — r 3,1)dvB - ayﬁ} (2.8d)

Ry2=R34=R4s=0 (2.8¢)

cO) = 0@ = (2.92)
C® =2Z[iZZ(20y — a*dy 37h) + 3]

—277(a?0ydylnat+y +2rd,y) — 18,8y (2.9b)

C® = 3, [iZZ(20y — a*dy d7B) + dyy] +2Z dyy (2.9¢)

CM=_28,0;y—2Zdya - dyy (2.9d)

As is seen from {2.92) for space~times of (2.1) class the vector e #is at
least a double Debever-Penrose vector (provided the space-time is not con-
formally flat). Hence in class (2.1) there are no algebraically general solutions
(of [1,1, 1, 1] Petrov type). It follows from (2.7b) that the ¢>* vector is geo-
desic and shear-free, and from (2.7) that the latter vector reveals an expansion
© different from zero and its rotation « disappears if and only if § = 0.3

3 It appears that in class (2.12)~(2.1j) without condition (2.1k) vector e3 is also geo-
detic and shearfree (I'yz4 = T'422 = 0) with a nondisappearing expansion @. The ¢34
vector is then also the Debever—Penrose vector (C'5) = 0}, but need not be degenerated
since C@) need not be equal to zero. From this point of view the solutions of the
[1,1,1,1] Petrov type are not excluded in class (2.1a)~(2.1j). On the other hand we do
not know if in the latter class at least one solution may exist of any Einstein equations
if condition (2.1k) is not fulfilled, We do not know, therefore, if condition (2.1k) is
independent of (2.1a)~(2.1j) or whether it is a conclusion drawn from the latter equa-
tions under the assumption that solutions exist of arbitrary Einstein equations in class
(2.12)~(2.1j). It has been found that if we assume ds2 in the form (2.1a)-(2.1j), then
we obtain that R y4 = C® and R,y = 0 and that the condition (2.1k) is equivalent to
C@) = Ry4 = Ryq = 0. Hence if we seek for example solutions of equations Ry, = Agy,
in class (2.1a)~{2.1}), then the relation (2.1k) will be a conclusion from these assump-
tions, and we shall obtain a degenerate soJution only.
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The electromagnetic field of interest to us is determined by means of the
vector potential ¥, given by the differential form ¥ = ¥, dx*, in the following
way:

= dez+eZ)e® —3dY- fea ?dY - 3dY- fea ?dY (2.10)
where
€=€(Y) (211)

is an arbitrary analytical function of the variable Y, only.

Vector ¥, as potential is of course given with an accuracy up to the gradient
of the arbitrary function, and hence the form V is determined with an accuracy
to the derivative of that function.

The tetrad components Fy, of the electromagnetic field tensor £, corres-
ponding to the potential ¥}, are found from the equation

dV=—4F,e A e? (2.12)
and the four independent among them are
Fi,=%e7? — LeZ? (2.13a)
Fy4=%e2? + 1827 (2.13b)
Fay = aZ?(k 0ye +ieZ o7p) = 5 04(eZ) (2.13¢)
Fou =0 (2.13d)

The electromagnetic field given by relations (2.13) fulfills the full set of
Maxwell equations without the currents and charges:

d(Fpe® neb)=0 (2.14a)

F, =0 (2.14b)

in every space-time characterized by the metric of class (2.1). Of course (2.14a)
follows immediately from (2.12). The direction e is the principal null direc-
tion of the electromagnetic field (2.13), since

e, Fpe7=0 (2.15)
Let us introduce the notation

NS f—ee (2.16a)

If we now assume that ds,? is the metric that is formed from the metric
(2.1)in such a manner that we substitute the function f; for function for in
other words, if ds? = 2e'e? + 2e3e?, where the forms e? are given by the rela-
tions (2.1), then

5 ee

2 = _ 332
dsy et ds i ) (2.16b)
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Of course the metric ds;? belongs to class (2.1), as the function fis a dispos-
able one. Let

Gus ¢ Rap — SR @.17)

Pup = 2FyoFy” ~ 5 8upFoaF? (2.18)

b dif
The following theorem is fulfilled:

Theorem 1. The fulfilment of any Einstein equations
Gap = Top (2.19)

by the metric ds? belonging to class (2.1) is equivalent to the metric
ds;? satisfying the Einstein-Maxwell equations

Gab = dgp _Pab (2-20)

the electromagnetic field of which is determined by the relations
(2.13).

The proof is based on the calculation of the express10ns for the tetrad comp-
onents G, of the Einstein tensor in both space-times ds? and ds,? makmg use
of (1. 15) and (2.8). Let us denote these expressions for short by Gab(ds %) and

Gp(ds ). From the calculations mentioned it follows that Ggp(ds;?) = G (ds?) —

P(e, &), where by Py,(e, ) we have denoted the expressions for the components
P,;, obtained by substituting in the right-hand sides of relations (2.18) the expres-
sions given in the right-hand sides of equations (2.13) for the corresponding
terms ;. It is easily seen that the thesis in both directions results immediately
from the above fact as well as from the fact that the field (2.13) fulfills equations
(2.14) in every space~time of class (2.1), to which belongs also the space-time
with metric ds°.

Let us note that in the light of (1.10) and (2.8¢), Ty = Thy = T44 = 0 is the
necessary condition for the metric of class (2.1) being among the solutions of
equations (2.19). The consistency conditions with respect to the metrics ds;>
and equations (2.20) are fulfilled, since from (2.18) considering (2.13d} it
follows that P22 = P24 = P44 =0.

Theorem 1 is an equivalence, one of the implications being of {viz., if
(2.19) then (2.20)] practical importance, since it says that il we have a
solution of any Einstein equations (2.19) for which we can prove that it can be
brought to the (2.1) form, then this solution can automatically be extended to
include the solution of the Einstein-Maxwell equations (2.20) by adding to
the expression for function f the component —ee, where e(Y') is an arbitrarily
chosen analytical function. The class of metrics (2.1) includes generalizations
of many known solutions of Einstein equations, among others generalizations of the
of the Kerr solution. The generality of class (2.1) seems to be quite high owing
to the occurrence in the form e* [see (2.1¢) and (2.1e)] of a disposable real
function v of all four coordinates.

3. Comparison with the Works of Other Authors

Robinson et al. (1969a) have shown that if in any space-time a null vector



DEGENERATE SPACE-TIMES 365

field k&, exists that is geodetic and shear-free, then there exists such a system
of coordinates x* = (r, p, Y, Y) that the metric form takes the shape

ds? =2P*dYdY + 2k,dx*(dr + QdY + QdY + Sk, dx") (3.1a)
where
kydx* =p(dp +qdY +3dY¥) (3.1v)

where the functions p, ¢ may depend only on three variables p, ¥, Y, whereas
the functions P, 0, S may depend on all four coordinates. As may be seen, the
class of metrics (2.1) is a subclass of a more general class (3.1). In the present
work we approached the problem in the opposite way. We assumed the form
of the metric and therefrom we obtained as a conclusion that vector 63”
[corresponding to vector &, in (3.1)] is geodetic and shear-free. This situation
is a particular case of a more general regularity. It appears that a theorem
reverse to the one proved by Robinson et al. (1969a) holds, viz., if we assume
that the metric has the form (3.1), then &, is the null vector, geodetic, and
shear-free. To prove this it suffices to observe that the metric form (3.1). has
the shape (1.11) and fulfills the conditions (1.9) and (1.10) if we assign to the
vector esﬂ the vector k, assuming at the same time quite formally that

P? = P'P’, Calculating in this tetrad system the values of the relevant T, we
find that T'yp4 = 4y, = 0, which proves the thesis. Hence we have the follow-
ing theorem:

Theorem 2. For every space-time its metric ds® can be presented in
the form (3.1) if and only if a null, geodetic, shear-free vector field
k,, exists in that space-time.

Robinson et al. (1969a), and Robinson and Robinson (1969) have studied

the properties of the (3.1) class of metrics as the solutions of equations

= 0. Robinson et al. (1969b) have forwarded a method of expanding
solutions of equations Ry, = 0 in class (3.1) to the solutions of Einstein-
Maxwell equations with electromagnetic field revealing the principal null
direction k. In this situation all the results that correspond to the solutions
of equations R, = 0 within the framework of class (2.1)—in the case of
theorem 1 when in equations (2.19) and (2.20) we have T, = O—are particular
cases of more general results of the authors quoted. Outside the region of
results covered by these authors are those results given in the present work
which correspond to the solutions of equations (2.19) and (2.20) with
T,p # O for at least one pair of indexes (g, b). Owing to the postulated
generality of the v function such solutions exist in class (2.1), e.g., solutions
including the cosmological constant.

The electromagnetic field (2.13) described in Theorem 1 has the potential

V,, given by (2.10), which is a generalization of the potential of the electro-
magnetic field that was the object of interest of Debney et al. (1969). The
potential considered by the latter authors [of appearance analogous to (2.10),
cf. Debney et al., 1969, p. 1853 formula (6.8)] in its particular case, when in
terms of the present work ¢ = & = const, gives a generalization of the Kerr
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metric to the Kerr~Newman one whose electromagnetic field (1) has a poten-
tial that passes into the Coulomb potential of the electric charge e when the
Kerr parameter a (according to the notation of Debney et al., 1969) tends to
zero, and (2) in the asymptotic area is a Coulomb electric field of charge e
and magnetic field of the magnetic dipole with momentum g - ¢ [cf. Debney
et al., 1969, pp. 1853-4). The above analogies allow what is from the physical
point of view a reasonable interpretation of the e(Y") function in ds;* metrics,
especially those that are generalizations of the Reissner-Nordstrom metric.

In special cases, when e = e, + igy = const, the real constants e, g, can be inter-
preted as electric and magnetic monopoles, respectively. Let us observe, how-
ever, that the separation into electric and magnetic monopoles is significant

at the level of the ¥, and F,;, quantities characterizing the electromagnetic
field [see (2.10) and (2.13)], but the metric ds,? itself is from the formal
point of view insensitive to this separation, since it includes the expression
—e€ equal to —ey” — go° for e = e, +ig,. If therefore ey, go = const, then the
constant —e,® — g, can be formally replaced in the given metric ds; by one
nonpositive constant.

4. Conditions of Solutions in a Certain Subclass of Class (2.1) and
Explicit Solutions

In this section we shall concentrate on the solutions of Einstein equations
containing the cosmological constant A:

Rab = 7\gab (4~ 1 )

restricting ourselves to solutions in class (2.1) with the additional limiting
assumption

37 =03,/=0 (4.2)

Of course every such solution may be generalized, in accordance with Theorem
1, to the solution of equations (2.20} with T = —Agy,, by supplementing the
expression for function fwith the component —e(Y)e(Y) corresponding to
the electromagnetic field (2.13).

After substituting the expressions for Ry, from (2.8) to (4.1) and calculat-
ing the sum Ry, + R34 we obtain that 9,3,/ = 2¢ — 4a?dy d7In o — 4N(r? +62).
From the latter equation after integration and the integration equations (4.1)
[taking account of (4.2)] we get

fi =r¥e — 20% 3y dylna) +r(M + M — m — m)
— if(7 — m) + ef? + 20280y 056

+ 202023y 0y Ina + A(—3r* — 2r%p% + %) —e2 4.3)
and the relations between the functions «, 8, m:
0?3y dyB + 20283y oy Ina + 3N = (i/2) (M — M) (4.4a)

3y dp(a? dy oy na + A% =0 (4.4b)
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o? [( — m) dy dyIna +ie Dy 78] +if=0 (4.4¢)

where M = M(Y') is an arbitrary analytical function of one variable, Y. Equa-
tion (4.4c) is the condition (2.1k) added here for completeness. From relations
(4.3), (2.16), and (2.1e) we see that in the expression determining the function
7 certain components cancel each other. If we provide for the presence of the
electromagnetic field (2.13), the expression for y will take the form

=02 +8)7" - [r’a’dydyina + a®Bdy d7p + o’ 0y dyIna
)M AM) + (N2 (5t — 2262 + %) —fee] (4.5)

Among the limiting cases when A = 0, the following solution of equations
(4.4) deserves our attention:

a=(1A2)(1 +eYY) (4.6a)
g= % i(m—m)+Yoya + Yoya + ll ::;:; (a+a) (4.6b)

where ¢ = a(Y') is an arbitrary analytical function of one variable, Y. It can be
easily shown that in this case we have

m(Y)=M(Y) (4.6¢)

fi=—e(V)(¥)  (f=0) (4.6d)

The metric (4.6) without the electromagnetic field has been found earlier
by Robinson et al. (1969a) and subsequently expanded by Robinson et al.
(1969b) to provide full solution (4.6) with the field (2.13). In the case e = 1,
the metric (4.6) is a generalization by means of three arbitrary analytical
functions m(Y), a(Y), and e(Y) of the solution found by Demiafiski and
Newman (1966), which in turn is a generalization of the Kerr-Taub-NUT-
Newman metric, which consists in supplementing the latter metric with a
magnetic charge parameter. The metric mentioned found by Demianski gnd
Newman (1966) is derived from (4.6) by assuming € = 1, m = mq + ing = const,
a=ay =ag = const [as may be seen from (4.6b), for @ = const only Rea appears
in metric (4.6)], and e = e, +igy = const. The constants m, 1y, 4y, €g, & are then
the mass, NUT, Kerr, electric charge and magnetic charge parameters, respect-
ively. If in this case a transformation of the coordinates is performed:

Y =tan (8/2) - exp iy, p = p' — 2mylna + 2ny0, then we obtain the standard
axially symmetric form of ds? in spatial spheric coordinates r, &, ¢ with the
fourth coordinate p'.

Since the solution (4.6) is a generalization of physically interesting metrics,
we shall present several properties of metric (4.6) that have not been given by
its first discoverers (Robinson et al., 1969a, b).

The metric (4.6) has the following features: It may be only flat or of [2,2]
or [2,1, 1] Petrov type; it is flat if and only if C® =0; C®) =0 if and only
if m = e = 0; the metric is of [2, 2] Petrov type if and only if ym = 3ye =0
and m#Qore#0anda=a,Y"! +a, +a3Y, where aj, a5, a3 are arbitrary
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complex constants (in view of (4.6b) we can assume without any loss of
generality that constant g, is real).

The proof of the above properties is based on relations (2.9)and Lemma 1,
and in the case of [2, 2] type first it is shown that 8ym = 8ye = 0 and subse-
quently it is proved that the function « has the above-given form. However,
the constants @y, 4,, @5 do not form a significant system of constants for the
solution of {2, 2] type. There exists eventually such a transformation of
coordinates, r, p, Y, Y =r, 0, Y Y where Y' = (4 + BY)/(C+ DY),
p'=p—2min(DY' — B) — 2m 1n(DY - B), the relation | AD — BC| =1
assumed for the complex constants 4, B, C, D so that in the case of [2, 2]
type the metric (4.6) preserves its shape of form ds?, and a(Y") = const. Hence
after performing this sort of transformation and droppmg the primes in o, ¥,
Y’ we have such a situation as if we had not performed the transformation
but only assumed that 4(Y)=a, and ¢; =a3=0.

In the case of nonvanishing cosmological constant A two solutions of
equations (4.4) were found giving metrics presumably unknown hitherto.

The first one is

a=(1A2)(1 +eYY) (4.72)
g=ngy = const (4.7b)

From (4.4) we then find that M, m = const and Im m = engy. Putting
M, o Re M = const (4.7¢)

we find from (4.3) that
fi = 2r(My — Rem) + N(—3r® — 2n%?% + ngH) —e(N)e(Y)  (4.7d)

For € = 1 we obtain after transformation of coordinates: ¥ = tan (8/2) -
exp ip, p=p' — 2 Re m -In & + 2ngy, and dropping the prime in p' that

ds® = (r* + ng?) (d9?* +sin? 9 dyp®) + 2dr(dp + 2ny cos $dy)
e Wlor + 2ny* +K(—3r —2n5%r? +ng) — e(Y)&(Y)
r +I’ZO

x (dp + 2ng cos 8 dp)? (4.8)

Fore = —] we obtain after transformation of the coordinates Y tanh (8/2)-
exp iy, p p' —2Rem-Ina— 2ngyy, and dropping the prime in p' that

= (r? + ng?) (d®? +sinh? ¢ do?) + 2dr{dp — 2ng cosh & dy)
<1 +2Mor~2naz +A (=5 = 2n2r? +1y?) — e()E(Y)
r? +ng?

x {dp — 2ng cosh 8 dyp)? (4.9)

The solution (4.8) is the generalization, given in standard form in spheric
coordinates r, ¢, v, with p as fourth coordinate, of the Taub-NUT metric
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providing for the presence of the cosmological constant A* and electromagnetic
field (2.13). The constants M, 1, are parameters of mass and NUT, respectively,
whereas e(Y') is an arbitrary analytical function determining the electromagnetic
field. The metric (4.9) is a hyperbolic equivalent of the metric given by (4.8).

Metric (4.7) reveals the following properties: It is conformally flat if and
only if C® =0, C® =0ifand only if My = ny = e = 0; it is of [2,2] Petrov
type if and only if C® # 0 and dye = 0;is of {2, 1, 1] Petrov type if and only
if Bye #* 0.

The proof is based on the relations (2.9) and Lemma 1.

Besides, calculating € from (2.9) and I'y), from (2.6), it may be easily
shown that for metric (4.7) the condition dye = 0 is equivalent to the fact that
vector e is geodetic, shear-free, and reveals an expansion different from zero;
the rotation of vector e vanishes if and only if 1, = 0; the condition that
Cc® #£0and dye =0 ([2, 2] type) is equivalent to the vector e™ beinga
double Debever-Penrose vector. Hence, in the case when metric (4.7) is not
of [2,1, 1] type, the independent vectors e and e™ have the same
features from among those mentioned hitherto.

The second solution of equations (4.4) with nonvanishing cosmological
constant which has been found has the form

A>0 (4.10a)
a=(2NYAH HAY + [HAY) (4.10b)
B=i(H - H) (4.10¢)

where H = H(Y) is an arbitrary analytical function of one variable, Y. From
(4.4) we get the following relations between the functions A, m, and M:

H=[2\(m = c)I"! = [(3/80) (co — M) (4.10d)

where ¢p, ¢; are arbitrary real constants. Considering (4.10d) we can select one
of the functions H, m, M as an arbitrary one. It is most convenient.to choose

H. In that case we obtain from relation (4.5), already providing for the presence
of the electromagnetic field, that

y= [ — H - HPY - {eor — hee + N[—§r* +r*(H? + H?)
—§rEP+ B + 5@ - B (4.10¢)

After transformation of the coordinates 7 =¢"+ H+H,p=p'—2c; Ina +
e(H + H), and subsequently dropping the primes at ¥’ and p’ we obtain the

4 The generalization of the Taub-NUT metric (with signature + — — —) to the solution with
a cosmological constant (without the electromagnetic field) has been given earlier by
Demianski (1972 and 1973), but the term providing for the presence of the cosmological
constant A has been calculated by him incorrectly. Eventually in a system of coordinates
identical as in (4.8) (account being taken of the signature) Demiafski has given
—(A/3) (2 + 5n¢?) - (€3)2, whereas this term should be —~A(r4 + 2ng2r2 — ng® (% +
ne® 7t (€3)2.
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metric ds? = 2e'e? + 2e3e? where

y P 124 77Tt -2 ‘

el = [fHAY + (HdY] 'dY=e 4.11a
N ¥) S ] (4.11a)
ed=dp + X [[HAY + (HAY|'d(Y + Y) (4.11b)

et =dr+[r*+22(H+H)y+4HHAT!
X {co(r + H+ H)—(\/6)r?[r* +4r(H + H)+12HH| — ec}e® (4.11c)

The metric presented above corresponds to both values of the coefficient

€ =21, and, as is seen, it is independent of e. In metric (4.11) the limiting
transition X = O cannot be realized if H # 0. However, if we assume formally
that N1/ fHdY = h = const [Re h # 0 considering (2.1g) and (4.10b)], then

H =0, and after transformation of the coordinates p= p’ — (Y’ +Y)X1?,
Y= (h+h)Y' and dropping the primes at p’, ¥’ we obtain a subcase of metric
(4.11)

ds? =r2dYdy + 2drdp + (1/r)[2cor — (\3)r* — e&] dp? (4.12)

in which the limiting transition A - 0 is of course admissible.
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